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1 Problem Statement

460 million people worldwide suffer from thyroid diseases, and this prevalence is higher in
poorer countries and increases with age [1]. Thyroid diseases can manifest a wide variety of
symptoms, and these symptoms often overlap with mundane problems like sleep deprivation
[2]. Even abnormalities in blood test results can be easily obscured by other mundane factors
[3, 4]. These reasons lead to a high probability of thyroid diseases being misdiagnosed or

completely missed.

This report investigates using an Al model to diagnose thyroid diseases with blood test results.
The comprehensive account of dataset CSVs, source code, terminal log, and heatmap output

images can be accessed via this link.


https://mycuhk-my.sharepoint.com/:u:/g/personal/1155174356_link_cuhk_edu_hk/ERbVvcVgW25NjeVaE9RS49QBHm83lNLCd18QWdFkd3T8kw?e=P47L2a

2 Methodology

2.1 Data Acquisition

The original blood test dataset is from the UCI Machine Learning Repository [5], but a version
reconciling everything into one file was used [6]. The dataset is a 9172x31 matrix with columns
on the ID, age, sex, surgical history, medication, blood marker levels, and medical diagnoses
of the patients. Refer to Table 2 below for a comprehensive list of the columns and their

functions.

2.2 Data Sanitisation
As can be observed in Table 2 below, there are multiple irrelevant columns of data and many

nullable data entries. This called for the need to first sanitise the data before using it.

Below is the code for data sanitisation — excerpt from processing. py.

dataset = dataset.drop(columns=["patient_id"])
dataset = dataset.drop(columns=["referral_source"])

dataset["sex"] = dataset["sex"].map({"M": @, "F": 1})

dataset = dataset.replace({"f": @, "t": 1})

MAX_ALLOWED_AGE = 100
average_age = dataset[dataset["age"] = MAX_ALLOWED_AGE]["age"].mean()
dataset.loc[dataset["age"] > MAX_ALLOWED_AGE, "age"] = average_age

dataset["sex"] = dataset["sex"].fillna(®.5)
dataset = dataset.fillna(@)




2.2.1 Column Purging

Since we are concerning the diagnosis of thyroid diseases from blood samples, only the data
immediately surrounding the disease are relevant, and data such as patient ID and patient

referral sources are purged.

Below is the code for column purging — excerpt from processing.py.

dataset = dataset.drop(columns=["patient_id"])
dataset = dataset.drop(columns=["referral_source"])

2.2.2 Data Conformation

As can be observed in Table 2 below, some of the data columns are presented with Boolean
values and strings. To modify it so that the dataset can be used to train a model, such data is
conformed to numeric values. For example, the “M” and “F” values for sex are conformed into

“0”s and “1”’s, and the “t” and “”” Boolean values are conformed into “1”’s and “0”’s.

Below is the code for data conformation — excerpt from processing.py.

dataset["sex"] = dataset["sex"].map({"M": @, "F": 1})

dataset = dataset.replace({"f": 0, "t": 1})

2.2.3 OQutlier Substitution

There are some outlier values of 455, 65511, 65512, and 65526 for the age. These values were

replaced with the average age of the remaining samples.

Below is the code for outlier substitution — excerpt from processing.py.

MAX_ALLOWED_AGE = 100

average_age = dataset[dataset["age"] = MAX_ALLOWED_AGE]["age"].mean()
dataset.loc[dataset["age"] > MAX_ALLOWED_AGE, "age"] = average_age




2.2.4 Void Filling
As can be observed in Table 2 below, some data entries are undefined. There are two cases of
this behaviour.

Below is the code for void filling — excerpt from processing.py.

dataset["sex"] = dataset["sex"].fillna(0.5)

dataset = dataset.fillna(o)

2.2.4.1 Empty Sex Values
There are entries for sex where it is simply empty. To fill the voids, values of 0.5 were entered

as neutral values.

Below is the code for filling sex value voids — excerpt from processing.py.

dataset["sex"] = dataset["sex"].fillna(®.5)

2.2.4.2 Unmeasured Blood Marker Levels
As there are columns indicating whether each blood marker level was measured, the
unmeasured blood marker levels lacked values. For this case of voids, zeros are filled in. Since

some columns indicate whether the markers were measured, the zeros should not be ambiguous.

Below is the code for filling blood marker level voids — excerpt from processing. py.

dataset = dataset.fillna(o)

2.3  Multi-Label Binarisation

In the dataset, each diagnosis is represented by a character, as detailed in Table 3 below. Each
patient can be diagnosed with more than one medical diagnosis. Thus, the dataset is multi-label.
Multi-label binarisation is used to turn this into a usable format, where each diagnosis is given

its separate column, similar to one-hot encoding. However, they are not mutually exclusive,



unlike one-hot encoding. Table 1 below demonstrates the restructuring from raw representation

to finalised representation. A and B are used here as arbitrary examples.

Table 1: Diagnosis multi-label binarisation reference.

Initial . Binarised  Binarised
. Interpretation
Representation Value of A Value of B
A A is diagnosed 1 )
AB Both A and B are diagnosed 1 1
A is the more likely diagnosis, but B is
AlB _ 1 1
also possible

Notice that while binarisation requires the output of a binary value, the actual dataset actually
includes a representation for uncertain diagnoses. However, for the sake of simplicity and
binarisation, both likely diagnoses are treated as certain diagnoses.

Below is the code for multi-label binarisation — excerpt from processing. py.

confidence_encoding(target):

encoding = {}

if " target:
parts = target.split("|")
encoding[parts[e]] = 1
encoding[parts[1]] = 1

else:
for char in target:
encoding[char]

return encoding
encoded_targets = dataset["target"].apply(confidence_encoding)
encoded_df = pd.DataFrame(encoded_targets.tolist()).fillna(®)
dataset = pd.concat([dataset.drop(columns=["target"]), encoded_df], axis=1)




2.4 Data Augmentation
Some diagnoses are inherently rarer than others, and this can lead to a bias in the model output
prediction. To mitigate this problem, sample data with rarer diagnoses is augmented via

duplication to reach the average sample count.

Below is the code for data augmentation — excerpt from processing. py.

classes = ['-', 'A", 'B’,

class_samples = {}
print("Before augmentation:")
for class_name in classes:
class_samples[class_name] = dataset[dataset[class_name] == 1]
count = len(class_samples[class_name])
percent = round(count/len(dataset)*100, 2)
print(f"C class_name}! has {count} ({percent}%]

average_samples = sum([len(class_samples[class_name]) for class_name in classes]) / len(classes)

for class_name in classes:
while len(class_samples[class_name]) < average_samples:
class_samples[class_name] = class_samples[class_name]._append(class_samples[class_name])

dataset = pd.concat(class_samples.values())

print("Af

for class_name in classes
count = len(class_samples[class_name])
percent = round(count/len(dataset)*100, 2)
print(f"Class {class_name} has {count} ({percent}%)

I S0
e S5 0
I 306
I G0
S /8D
I 830
I 536
V]
e | 537
e /1 0
s | | 86
I 500
I 0D /|
I /8
I 5 ] 2
I 530
s 00
I (7 D
I S S
e (7 7 ]

> OU0OMTOI _cxrXZ20U0TvTOxITW®W
4]
N
w
>PWO0OMTOI —c ArXZ0UTvOIW®W

'

[©2]

~

~N

Ry
1

1 10 100 1000 10000 1 10 100 1000 10000

Figure 1: Diagnosis sample count before (left) and after (right) data augmentation.



As can be observed in Figure 1 above, the data augmentation helped immensely with ensuring
appropriate representation of each diagnosis type. The data augmentation increased the dataset
sample count from 9172 to 19518, which equates to a 113% increase. Note that the diagnosis
“T” was not shown since it has zero entries in the dataset despite being in the key. There are a

total of 20 different valid diagnoses, excluding “T”.

2.5 Model Architecture

2.5.1 Random Forest Ensemble

A random forest ensemble with 100 decision trees was chosen as the model for classification.

Each decision tree would generate a prediction, and the ensemble would congregate the

decisions and generate a result via majority voting.

Decision tree-1 Decision tree-2 Decision tree-3 Decision tree-N

l l l l
Result-1 Result-2 Result-3 Result-N

| -

( Majority voting )
)

Final result

Figure 2: Diagram of a random forest ensemble.




2.5.2 One vs Rest Classification

Since the dataset is multi-label, a one vs rest classification was used. Each classifier (random
forest ensemble) would produce a binary result to classify one class against the rest.

Binary classification: Multi-class classification:
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Figure 3: Diagram of one vs rest classification.

2.5.3 Classifier Chaining

Since each classifier is only responsible for classifying one class, 20 different classifiers would

be necessary to classify the 20 different diagnoses. These 20 classifiers would be chained
together to produce a final prediction. Classifier chaining is done by first having the first
classifier produce a prediction for one of the diagnoses, then feeding that prediction as an extra
feature to the next classifier, and so on. Each classifier down the chain will hence receive an
increasing number of features. For our case, there are 28 features initially, which the first
classifier will receive, then the next 29 features, and eventually the last one will receive 47

features.
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Figure 4: Diagram of classifier chaining.
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2.5.4 Training-Testing Data Split
Considering the significance of duplicated data, as shown in 2.4 Data Augmentation above, a

larger testing-to-training data ratio of 1:1 was used, meaning that 50% of the overall dataset
was each isolated to be the training and testing data. This decision was made to mitigate the
potential of overfitting as much as possible to retain integrity. The data split was also

randomised to prevent biases.

11



3 Results
For the training data, the model produced perfect 100% accuracy, precision, and recall scores.
The confusion matrix for the training dataset can be seen in Figure 5 below. A comprehensive

display of the confusion matrices for each diagnosis can be seen in Figure 7 below.
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Figure 5: Confusion matrix heatmap for the training data.
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For the testing data, the model produced 97.3% accuracy, 98.2% precision, and 97.5% recall
scores. The confusion matrix for the testing data can be seen in Figure 6 below. A
comprehensive display of the confusion matrices for each diagnosis can be seen in Figure 8

below.
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Figure 6: Confusion matrix heatmap for the testing data.

We can conclude that Al models can, in fact, be an effective and accurate method of diagnosing

thyroid diseases given blood test results at 97% accuracy.
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4  Discussion
While the current trial shown in this report can produce a satisfactory result, numerous

limitations exist.

Firstly, the rarity of certain diagnoses led to the necessity of data augmentation, as
demonstrated in 2.4 Data Augmentation above. This obscures the variations and patterns on
blood tests that a certain diagnosis may produce, leading to the model possibly overfitting for
those diagnoses. Future work could overcome this problem by simply including more data

points.

Secondly, while this model could predict the variation of thyroid diseases from blood test
results, this only solves part of the current problem. As alluded to earlier in 1 Problem
Statement above, a big part of the problem with thyroid disease diagnosis is the overlapping of
symptoms and markers, leading to difficulties in discriminating differential diagnoses. Future
work could alleviate this problem by compiling a dataset with more features with increased
diversity and more diagnoses of often-confused diseases and training a model specifically for

discriminating differential diagnoses.

Thirdly, while a binary diagnosis can aid medical judgement, the model can provide much
better information by predicting the disease's stage or severity and suggesting treatment plans.
However, obtaining a dataset encompassing these may be difficult due to the broad scope

necessary.

In conclusion, this project proved the viability of diagnosing thyroid diseases using blood work

results with a high accuracy.
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6 Appendix

Table 2: Comprehensive list of the original dataset columns and their meanings.

Column Name Data Type Data Meaning
age number Age of the patient
sex («M” | “F?)? Sex of the patient
on_thyroxine wg? | «fr Whether the patient is on thyroxine
query_on_thyroxine  «t” | «f» Whether the patient is on thyroxine?

on_antithyroid_meds «t” | «f”» Whether the patient is on anti-thyroids

sick wg? | «f Whether the patient is sick

pregnant wg? | «f» Whether the patient is pregnant

thyroid_surgery wg? | «f» Whether the patient has undergone thyroid
surgery

I1131_treatment wg? | «f» Whether the patient is undergoing 1131
treatment

query_hypothyroid wg? | «f Whether the patient believes they have

hypothyroid
query_hyperthyroid  «t” | «f» Whether the patient believes they have
hyperthyroid
lithium wg? | «f Whether the patient is on lithium
goitre wg? | «f» Whether the patient has goitre
tumor wg» | «fr Whether the patient has a tumour
hypopituitary wg» | «f Whether the patient has hypopituitary
psych “gr |« Unclear?
TSH_measured R L I Whether TSH was measured
TSH number? Measured TSH levels
T3_measured wg? | «f» Whether T3 was measured
T3 number? Measured T3 levels
TTuU_measured wg» | «f Whether TT4 was measured
TTU number? Measured TT4 levels
TUU_measured “g? | «f? Whether T4U was measured
TUU number? Measured T4U levels
FTI_measured wg? | «f» Whether FTI was measured
FTI number? Measured FTI levels
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TBG_measured “pn | «fn Whether TBG was measured

TBG number? Measured TBG levels
referral_source string Patient referral source

target string Medical diagnoses of the patient
patient_id number Patient ID

Table 3: A comprehensive list of the diagnoses and their character representations.

Character  Occurrence Medical Diagnosis Diagnosis Category

6771 73.82% Healthy Healthy

193 2.10% Hyperthyroid
21 0.23% T3 toxic ) o
o Hyperthyroid conditions
18 0.20% Toxic goitre
9 0.10% Secondary toxic
1 0.01% Hypothyroid
239 2.61% Primary hypothyroid ) o
: Hypothyroid conditions
419 4.57% Compensated hypothyroid
8 0.09% Secondary hypothyroid
371 4.04% Increased binding proteins Binding protein
43  0.47% Decreased binding proteins abnormalities
573 6.25% Concurrent non-thyroidal illness Other diseases

116  1.26% Consistent with therapy
129  1.41% Under-replaced
110 1.20% Over-replaced
15 0.16% Anti-thyroid drugs
5 0.05% 1131 treatment
14 0.15% Surgery
197 2.15% Discordant assay results
85 0.93% Elevated TBG Miscellaneous
0 0.00% Elevated Thyroid hormones

Replacement therapy

evaluation

Anti-thyroid treatment

evaluation

= »nwn T © vV O =2 = r X 0 H T o m m O N W >
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Figure 7: Comprehensive display of confusion matrices of each diagnosis for the training data.
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Figure 8: Comprehensive display of confusion matrices of each diagnosis for the testing data.
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